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Preface

The purpose of this study was to determine the feasibility of using

Fast Fourier Transforms (FFT) to solve Boundary Value Problems (BVP).

Since many Boundary Value Problems are solved using some type of Finite

Difference Method, it was felt that a comparison between these two

methods might provide an insight into the usefulness of the Fast Fourier

Transform in solving BVP.

The one dimensional BVP was studied to help provide a basis for

understanding the two dimensional BVP. The two dimensional BVP was

studied using only a simple case where the boundary conditions were zero,

but could be easily extended to non-homogeneous boundary conditions.

The understanding and insight of the FFT I gained these last twelve

weeks has been extraordinary. My thanks to Dr. N. Pagano of the Air

Force Weapons Lab for sponsoring this thesis. I would like to acknowledge

Dr. Kaplan for his never ending support, even when the prospects of

getting the one and two dimensional FFT computer codes working was some-

times questionable. I would also like to thank Cpt. Ric Routh and

Cpt. Jim Helton who provided greater understanding and appreciation for

the FFTs. And finally, I must thank my wife, Jeanine, and my children,

Jennifer, Greg, and Derek, who supported and sustained me through this

period.
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Abstract

The purpose of this study was to determine the feasibility of using

Fast Fourier Transforms (FFT) to solve Boundary Value Problems (BVP) and

* then compare the results to those of the Finite Difference Method (FDM).

Variations of Poisson's one and two dimensional equations were used as a

vehicle to develop the FFT method. For the one dimensional BVP, both

homogeneous and non-homogeneous Dirichlet boundary conditions were con-

sidered. In the one dimensional BVP the inhomogeneous function, F(x),

was also varied. The two dimensional BVP, only one inhomogeneous function,

F(x,y), and homogeneous boundary conditions were used. The one dimensional

model was used as a basis for developing the two dimensional model.

The analytical solution of each problem was compared to the numerical

solution of the FDM and the FFT method at varying mesh sizes. The compu-

tational time of the FDM and the FFT method were also compared.

The results indicate that the FFT is extremely efficient in the two

dimensional BVP because of the computer storage space required and the

computational time needed to solve the FFTs. The accuracy of the FFT

compares favorably to the FDM and, as the mesh size decreases, becomes

more accurate than the FDM.

vii



FEASIBILITY AND COMPARISON INVESTIGATION OF THE USE

OF THE FAST FOURIER TRANSFORM AND FINITE DIFFERENCE

METHOD FOR NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS

I. Introduction

Background

Many science and engineering problems require the solution of one or

more Boundary Value Problems (BVP). Many of these BVPs cannot be solved

analytically because of irregular boundary conditions or complex geome-

tries. The most common method of solving these type of BVPs is by means

of the Finite Difference Method (FDM). In this method the derivatives of

the partial differential equation are approximated by use of Taylor series

expansion, which reduces it to a set of algebraic equations that can be

solved by simultaneous equations. The solution of these simultaneous

equations may be found with the aid of a computer by using direct matrix

inversion techniques which require N3 operations, where N is the number

of simultaneous equations (14:6). Hence, other methods which require

fewer operations have been developed to solve sets of simultaneous linear

N. equations. These methods include both direct and iterative techniques

and in each case decrease the computational time (3:111; 6:417).

One of the techniques used to solve BVPs involve using Discrete

Fourier Transforms (OFT). The computational time for a OFT is only on

the order N2, but to solve a one dimensional BVP it becomes N3 . When the

lwb



Fast Fourier Transform (FFT) algorithm is applied to the DFT the computa-

tional time is decreased to an order of NLOG 2N operations, which equates

to 4NLOG2N + 4N to solve the same one dimensional BVP (1:8; 11:215).

This decrease in computational time greatly enhances the use of FFTs

over direct FDMs such as Gauss Elimination. The use of the DFT in conjunc-

tion with the FFT will be referred to as the FFT method throughout the

rer-ainder of this study, since the DFT takes advantage of the FFT algorithm

for increasing its computational speed.

Purpose

This thesis topic stems from an article in the May 1984 Physics

Today (5), which mentioned the use of FFTs to solve BVPs in two and three

dimensions. For a three dimensional BVP with a grid or mesh of 100xlOOxlOO,

the matrix becomes very large, namely 106x 106. This size matrix,

according to the article, can easily be solved using FFT techniques

(5:56). A closer investigation of this method revealed a lack of published

information concerning the FFT technique. It was found that the FFT

method was faster and required less computer space than conventional FDMs

for two and three dimensions (5:547; 13:710). In the information that

was published only BVPs with homogeneous boundary conditions were solved.

There is an obvious lack of information on the feasibility of using FFTs

to solve BVPs in one, two, and three dimensions. Additionally, there is

no known published information concerning the use of FFTs to solve BVPs

with boundary conditions other than zero.

This study investigated the feasibility of using FFTs to solve BVPs

and compared this method with the Gauss Elimination method in terms of

both computational speed and accuracy.
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Scope

The study will consider only the problem of the one and two dimensional

Poisson's Equation, with Dirichiet Boundary Conditions. Both zero and

nonzero boundary conditions will be analyzed. In each dimension the

Poisson's equation will be solved analytically, and numerically using

Gauss Elimination and FFTs. The accuracy of the Gauss Elimination method

and the FFT method will be compared to the analytical solution. The compu-

tational time of the Gauss Elimination and the FFT method will then be

compared.

Plan of Development

The initial approach was to develop a FFT computer program to solve

a one dimensional Poisson Equation with boundary conditions equal to

zero. A Gauss Elimination (GE) program was then developed to solve the

same one dimensional Poisson Equation wita1 boundary conditions equal to

zero. These two programs were then expanded to accept a two dimensional

Poisson equation with boundary conditions equal to zero. Modifications

were then made to account for boundary conditions other than zero.

The accuracy of the numerical solutions were then compared to the

analytical solutions, and computational times of the GE method were com-

pared to the computational times of FFT method. Finally, limitations on

the FFT method and feasibility of possible directions of further research

were discussed.

3
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II. Theory

In order to understand the use of FFTs to solve boundary value

problems, it is necessary to understand some theory about the Fourier

Series and the Discrete Fourier Transform.

Fourier Series

Any function expanded as a series of eigenfunctions is defined as a

Fourier Series, where the interval of orthogonality is (0< x <2i)

(17:65). Because the series is periodic any 2ff length can be used. If

the interval (0< x <21) is replaced by (-L< x <L) , then the Fourier

Series can be defined as

U(x) a a 2 + [acos(nx/L) + b sin(nffx/L)] (2.1)

n=l

The coefficients a a and b are
0 n n

L

a = 1/L U(x)dx (2.2)
0

-L

a = 1/1, fU(x)cos(nfrx/L)dx n=1,2,3. (2.3)

n

-L

b = 1/LfU(x)sin(nx/L)dx n=1,2,3. . . (2.4)

-L

This same series can be moved along any interval (-L< x <L) or from

(0< x <2L) as long as the interval remains 2ff (7:283). Thus the Fourier

coefficients can be rewritten as

4



L

a =2/Lf U(x)dx (2.5)

0

L

an = 2/L U(x)cos(nx/L)dx n=1,2,3. (2.6)

0

L

= 2/Lf U(x)sin(nx/L)dx n=1,2 3. (2.7)

0

Discrete Fourier Series

The Fourier Series can also be expressed as a discrete finite series.

The derivation will not be shown here, but can be found in Numerical

Analysis books by Richard W. Hamming (7), or by Robert Vichnevetsky (16).

There are three orthogonality relationships, though, that aid in the

derivation of the Discrete Fourier Series and understanding of the Discrete

Fourier Transform (7:284).

2N-1 0 km
I cos{(2T/L)k(Lp/2N)}cos{(2Tr/L)m(Lp/2N)} = N k=m$O

p=0 2N k=m=0 (2.8)

2N-1 cos{(2r/L)k(Lp/2N)Isinl(2r/L)m(Lp/2n)} 
= 0 (2.9)

, 2NI

p=0

2N-1 0 kgm
I sin{(2/L)k(Lp/2N)}sin{(27/L)m(Lp/2N)} = N k=m$O

p=0 2N k=m=O (2.10)

Based on these orthogonality relationships the Discrete Fourier Series can

be defined as

5
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N-i
U(x} ao0 /2 +kI {akcos(k2ffx/L) + b ksin(k2nx/L)} (2.11)

U~x) =a/2 +k=lk

where

2N-1
ak = 1/N I U(x)cos(27kx/L) (2.12)

k=O

2N-I
b k  = 1/n U(x)sin(27kx/L) (2.13)

k=O

The coefficients ak and bk are also called the Discrete Fourier

Transforms (16:50). To see why this is true it is necessary to review

the Fourier Integral, then relate the Integral to the Discrete Fourier

Transform.

Discrete Fourier Transform

For the purposes of this study the Fourier Integral will not be

derived, but only stated. Several books contain the derivation of this

Integral, which include E.C. Titchmarch's book on Fourier Integrals (15).

The Fourier Integral is defined as

U(w) = fU(t)e- iwt dt (2.14-a)

then

U(t) = 1/2TrJU(w)e iw t dw (2.14-b)

where w 21f . The function U(w) is called the Fourier Transform of

U(t), and U(t) is the inverse Fourier Transform of U(w). Equation (2.14-a)

6



At
U(t)

0 tI1 t 2  t 3  t 4  t 5  t 6  t N

Figure 1. Function U(t) on the Interval (0< t <t- - N

and (2.14-b), also known as the Fourier Integral Theorem, can then be

discretized to obtain the Discrete Fourier Transform.

Let U(t) be defined as some function between the interval (0< t <tN

as outlined in Figure 1. One can then determine the Discrete Fourier

Transform of U(t), which is defined as U(w).

If one allows U(t) to be discrete for every U(tk) , where

k=0,1,2. . . N , and applies the Fourier Integral Theorem, while letting

"FT' be defined as a "Fourier Transform," the following is obtained.

FTIU(t)} = U(w) = JU(t)e-iWt dt (2.15)

In equation (2.15) w is defined as the frequency w=2f/T , and T is

defined as the length from 0 to tN* Because U(t)=O for t<0 then

U(w) = JU(t)e- iw t dt (2.16)

0

By letting U(t)=0 for t>tN , then

7



~tN
U -wt

U(w) = (t)e dt (2.17)

0

By discretizing the integral the following is obtained

tN
f-iwt

U(w) = U(t)e dt (2.18-a)

0

N-i -iwt k
U(w) I U(t k)e At (2.18-b)

k=0

where t N=NA t=T , since N is defined as the number of intervals between

zero and tN and At is defined as the interval. This means At=T/N and

tk=kAt=kT/N , then

N-1 -iw(kT/N)
U(w) = U(t k)e T/N (2.19-a)

k=0

N

U(w) = T/N I U(t k)eiw(kT /N) (2.19-b)
k=l

Since w=2ry/T , then w=mAw=m2n/T , where m=1,2,3. . . .N , which

leads to

N-i (TN

U(mAw) = TIN N U(t k)e-i(2 m/T) (kT/N) (2.20-a)

k=0

N-I

U(mAw) = T/N N U(tk )e-i2mk/N (2.20-b)

k=0

•. J

8



U(mAw) = U(w ) = (T)FT{U(tk)I (2.20-c)

where the Discrete Fourier Transform is defined as

N-i i2fkm/N

U(Wm) = FTkU(t = 1/N I U(tk)e- (2.21-a)

k=0

If one lets "FT- 1" be defined as the Inverse Discrete Fourier Transform,

then

N-i i2km/N

U(tk) = FT- 1 U(w)} = 0I U(Wm)e (2.21-b)

m= 0

The Discrete Fourier Transform in equation (2.21-a) is called the complex

form of the DFT. The DFT can also be expressed in terms of sines and

ijx
cosines by using Euler's identity, e cos(jx) + isin(jx) and is

defined as

N-I
U(w) = a /2 + I [akcos(2nkm/N) + bksin(27km/N) ]  (2.22)

m o k=l

It is obvious, then, from equation (2.11) that a , ak and bk are the sameok

Fourier coefficients. Thus, these Fourier coefficients are also called

the Discrete Fourier Transforms (16:50).

Sampling and Aliasing

There are two terms that are synonymous with DFTs that need an

explanation. Since the DFT is not continuous, a discrete finite number

of points must be determined at which the DFT will be calculated. These

9



equidistant points are called the "sample" over which the DFT is evaluated.

For example, U(t), in Figure 1, is being "sampled" over the interval

tk=til t2 , t3 ..... tN

The other term that needs explanation is aliasing. If At, in

Figure 1, is too large, the Fourier coefficients of the higher frequencies

will fold into the coefficients of the lower frequencies. For example,

if a sample of eight pcints is taken over an interval, the coeff cient of

the first harmonic will be equal to the coefficient of the seventh harmonic;

the coefficient of the second harmonic will be equal to the coefficient of

the sixth harmonic; and the coefficient of the third and fifth harmonic

will be equal. To avoid this problem of aliasing the Nyquist sampling

rate is used. This formula is 1/ At=2f . Simply stated, this says if

At < 1/2f , then aliasing will occur; if t > 1/2f then aliasing will

not occur (1:85). (The f is defined as the highest frequency component

of the Fourier transform.)

Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm takes advantage of the

symmetry of the trigonometric functions in the Discrete Fourier Transform

(DFT). The regrouping of the equations in calculating the DFT reduces

the number of computational operations. The Discrete Fourier Transform

requires on the order of N 3 operations to solve a one dimensional BVP,

where N is defined as the number of discrete data points. The Fast

Fourier Transform algorithm is on the order of 4NLOG 2N + 4N operations to

solve the same BVP. The FFT requires on the order of NLOG2N operations,

but in calculating a one or two dimensional BVP the number of computations

10



--- --- -- .........- -- - - - - -

must include calculations of the FFT. the calculations of the inverse

FFT, and any computations conducted while the function is transformed.

Additionally, any modifications to the FFT algorithm (i.e., deletions of

the real or imaginary components of a complex array) add additional

calculations (11:215). The theory behind the FFT algorithm will not be

discussed in this study. E. Oran Brigham's book on FFTs (1) contains

both an intuitive and theoretical development of the algorithm and is

recommended to the reader who wishes to gain an indepth understanding on

how and why the FFT algorithm works.

V

4
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III. Poisson's Equation in One-Dimension

The first problem examined in this study is Poisson's equation in

one dimension. The general form of the equation is

d2U(x)- -F(x) (3.1)

dx
2

where U(x) is the unknown function to be determined and F(x) is a known

function. Both homogeneous and non homogeneous boundary conditions are

examined along with different values of F(x). The boundary conditions and

the function F(x) are separated into four distinct cases.

Case 1 U(0)=0 U(L)=0 F(x) = 40

Case 2 U(O)=0 U(L)=O F(x) = x

Case 3 U(O)=2 U(L)=8 F(x) = 40

Case 4 U(0)=2 U(L)=8 F(x) = x

Analytical Solution

The general solution to equation (3.1) for F(x) = 40 is found by

direct integration and takes the form

U(x) = -20x 2  + Ax + B (3.2)

for case one and case three. Applying the boundary conditions in case

one, equation (3.2) becomes

U(x) = -20x 2  + 200x (3.3)

and applying the boundary conditions in case three, equation (3.2) becomes

U(x) = -20x 2  + 200.6x + 2 (3.4)

12



The general solution to equation (3.1) for F(x) = x in case two and four

is also found by direct integration and takes the form

-X
3

U(x) - + Cx + D (3.5)

By applying the boundary conditions in case two, equation (3.5) becomes

--X 3 11O 0x

___ : + (3.6)
6 6

and applying the boundary conditions in case four, the equation becomes

UX -x 3  259x (3.7)

6 15

V Equations (3.3), (3.4), (3.6), and (3.7) are the analytical solutions

to the one dimensional Poisson equation (3.1).

Numerical Approximation

This same equation (3.1) can be solved using numerical approxima-

tions. Two different techniques were examined, the FDM and the FFT

method. Both methods involve the subdividing of the region concerned into

N nodes, or mesh points, and solving a set of simultaneous equations for

each value of N. The FDM can solve the simultaneous equations using

different techniques including Gauss Elimination, Tridiagonal, or Iterative

Methods. The FFT method uses the FFT algorithm, which solves the trigo-

nometric equations using symmetry of the sine and cosine terms.

In general, the accuracy of the solution is dependent upon the

number of nodal points chosen: the finer the mesh, the larger the number

of nodes, and the greater the accuracy.

13
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-2 1 0 0 u(x 1 ) F(x 1 )

1 -2 1 0 u(x 2 ) F(x2 )

0 1 -2 1 u(x3 ) F(x3 
)

-2 u(x 4 ) F(x )

Figure 2. General Solution to Equation (3.8) with 4 Interior Nodes

Finite Difference Method. The FDM, as mentioned in the Introduction,

approximates the derivatives of the differential equation by use of a

truncated Taylor Series expansion. The derivation can be found in many

texts which include C.F. Gerald and P.O. Wheatley (6), and Clark and

Hansen (3). By using the Taylor Series expansion a central difference

approximation can be applied to equation (3.1) to get

0. (U - 2
d2U(x) 62U(x) (Uk+l - 2U k + U k _1)

dx)k = -F(kh ) (3.8)
dx2  h 2  -h

2  x
x X

where x=kh The h is defined as the distance between nodal points,
x x

N is defined as the total number of interior nodes, and k=1,2,3. .N

(14:6). Equation (3.8) can be reduced to matrix notation

Au = -F (3.9)

where *A* is defined as the coefficient matrix which is tridiagonal, "u"

is a column matrix of unknowns, and "F" is a known column vector (see

Figure 2). This matrix equation can then be solved by either the Tri-

diagonal method (Thomas method) or the Gauss Elimination Method.

14



Fast Fourier Transform Method. The FDM takes advantage of a poly-

nomial interpolation, whereas, the FFT method takes advantage of a

trigonometric interpolation (16:89). In the FFT method, h=L/(N+)

where L is defined as the length of the region of concern, N is the

number of sample points and h is defined as the length of each sampled

interval. It follows, that x =nh , where n=0,1,2,3. . N+1 and is
n

defined as the set of grid points in which the solution of equation (3.1)

is to be approximated. By inspection the BVP must be an odd function,

since at both boundary conditions the value is zero or a constant. The

equation

N
U(x) = bksin(krx/L) k = 1,2,3. . .N (3.10)

k=l

can be used to approximate the solution to equation (3.1). It follows

from equation (2.11) and (2.13), and using the orthogonality relationship

of equation (2.10) that

N-i
bk  = 2/(N+I) ' U sin(k~x/L) (3.11)

k k

By taking the second derivative of U(x), equation (3.10), with respect

to x the following is found.

d2U( x)N
dX 2  - b k(kf/L) 2sin(k~x/L) (3.12)

k=1

By substituting the right side of equation (3.12) into equation (3.1),

n

15
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one gets the following results.

N

- bk(krr/L)zsin(klTx/L) = -F(x) (3.13)
k=l

By discretizing x to x , where n=1,2,3. . .N then equation (3.13)~n

becomes

N
b k r/L) 2sin(kx /L) F(xn) = -f (3.14)

k=1

Now, one can solve for bk using the orthogonality relationship, equation

(2.10), to obtain

N

bk = 2/(N+1)(L/kir) 2 I f sin(k x /L) (3.15)kn n
n=l

where

N

FT(f ) = fc = 2/(N+I) I f sin(kffx /L) (3.16)

n K n=l

Solve for U by discretizing U(x) such thatn

N
U = I b sin(kfrx /L) (3.17)n k n

k=l

The specific sequence used to solve for each nodal value of U using then

FFT method is thus:

I. Compute the FT(f n), equation (3.16), by using the FFT algorithm.

2. Compute each value of bk by dividing the eigenvalue of U(x) by

the FT(f ). See equation (3.15).
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3. Compute the nodal value of U by using the inverse FFT algorithm,

equation (3.17).

Computer Analysis

FORTRAN codes were developed to solve the one dimensional Poisson's

equation using the FDM and the FFT method. The codes take advantage of

subroutines found in the International Mathematical and Statistical

Librar~es, Inc. library, more commonly called the I,%SL library, and were

run on the Harris 800 main frame computer. A listing of the codes using

the FFT method are in Appendix A. The FDM used both the Thomas method

and the Gauss Elimination method. The Thomas method was programed in

FORTRAN using the algorithm found in Clark and Hensen, page 47. The

Gauss Elimination method was programed in FORTRAN using the IMSL routine

LEQIF.

FFT Algorithm. The IMSL subroutine used throughout this study of

-, the FFT was FFTCC. The FFT algorithm requires a complex value input and

provides a complex value output. Additionally it computes the transforms

over a 2L interval. Because of these peculiarities it was necessary to

modify the computer code to compute the FFT for the one dimensional

Poisson's equation. Equation (3.1) is described only over an interval

of L. In order to have the FFTCC subroutine operate properly over this

interval it was necessary to input the function over a 2L interval, then

only accept one half of the interval in the output as the solution. For

example, in case one the function, F(x)=40 , is a rectangular function

over the interval 0< x <L . Since equation (3.1) is described by a sine

function, which is odd, it was necessary to input F(x)=40 from 0< x <L

17
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and F(x)=-40 from L< x <2L . On output, only the REAL value of the

complex ouput was accepted from 0< x <L In the FFTCC subroutine the

first coefficient is only a . In electrical engineering terms this is

referred to as the DC component. This component must be eliminated when

solving the one dimensional Poisson's equation since the solution is only

a series of sine terms. Hence, in the main FFT program it was necessary

to sum for b from n=2 to N rather than n=l to N.

N
b = [2/(N+1)1 [L/(kr)] 2  f sin(krx /L) (3.18)

n=2

Equation (3.18) eliminates the DC component and allows the FFTCC subroutine

to approximate the one dimensional Poisson's equation.

The four cases outlined on page 12 vary not only the function F(x),

but also the boundary conditions. Two of the four cases used boundary

conditions other than zero. In applying non-zero boundary conditions to

Nthe FDM the non-zero boundary is absorbed into the F(x) function. This

process applies similarly to the FFT method. On input the function F(x)

must be adjusted at the endpoint to account for the non-zero boundary

condition. For example, in case three, over an interval from 0< x <L

the values of F(x) would be as listed in Table I.

ABy programirl the input values of F(x) in this manner the desired

results are achieved. This process seems logical, as one examines a

delta function, such as F(0)=2 , in normal space, the value becomes a

constant in Fourier space and bounds the equation that is transformed.

iv When the inverse transform is conducted this constant returns to a delta

function adjusted somewhat by the computation conducted in step two of

the FFT method.

18



TABLE I

Values of F(x) vs x in Case 3
for the One-Dimensional BVP

Value of x Value of F(x)

0 2
2 40
4 40

96 40

8 40
10 8

'4 Exact Solution. Particular solutions to equation (3.1) were found

by letting L=10 and solving for x at values of 2, 4, 6, and 8. The

a' table of these results can be found in Appendix B. These results were

then compared to the numerical solution using the FDM and the FFT method

at the same values of x, 2, 4, 6, and 8.

Nodal Points. Each case of boundary conditions, as described on

page 12, was computed using four different mesh sizes. The mesh size

was decreased in each of the four cases, thus resulting in a better

approximation to the analytical solution. The interior nodal mesh points

used were 4, 9, 49, and 99. Appendix B contains the results of these

computations.

Average Error. The accuracy of the approximations was determined

using an average percent error, or relative error (6:42). For the one

dimensional case the average percent error was defined as

<> Exact Solution - Numerical Solution X 100 (3.19)
Exact Solution
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Comparison of Approximations to Exact Solutions. The plots of the

average percent error for each set of interior nodes are found in

Figures 3-6. In each of the four cases, as outlined on page 12, the FDM

solution was found to be the same as the analytical solution. Consequently,

the only error differences reflected on Figures 3-6 are in the FFT method.

In all cases, as the number of interior nodes increase the average percent

error in the FFT method decreases. The computations for each ncdal point

for the FDMs and the FFT method are in Appendix B, Tables III-VI.

Computational Time. In order to calculate N interior nodal points

using the FFT method it is necessary to calculate the Fourier Transform

of 2N+2 points. This is due to the interval having to be sampled over

the entire 2L period as described in the paragraph on the FFT algorithm.

A comparison of computing times is found in Figure 7. It is important

to keep in mind that the FFT times reflect 2N+2 calculations while the

FDMs are only N calculations. The Thomas method, or tridiagonal method,

proves to be the most efficient method in the one dimensional problem.

The FFT method becomes more efficient as the number of nodal points are

increased as compared to the Gauss Elimination (GE) method. This is due

to the 4NLOG N + 4N calculations required for the FFT method in one dimen-

sion, while the GE method requires N 3 calculations. Figure 8 is a

W comparison of the total computer time, which includes loading of arrays

for input and writing the solutions to a file on output. The computation

times for the algorithm and the computation times for the total computer

e: program are listed in Appendix B, Tables VII and VIII respectively.
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BOUNDARY CONDITIONS U(O)=U(IO)=O
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0100
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Figure 4. Case Two, Average Error Comparison Between
FDM, FFT Method and the Analytical Solution
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~Figure 6. Case Four, Average Error Comparison Between

FDM, FFT Method and the Analytical Solution
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Figure 8. Comparison of Total Computer Time for

the Thomas Method. the GE Method, and the

FFT Method
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IV. Poisson's Equation in Two Dimensions

The second problem examined in this study is Poisson's equation in

two dimensions. The form of the equation is

V2U(x,y) = -2 (4.1)

with boundary conditions

U(Oy) = 0 4.2-a)

U(8,y) = 0 (4.2-b)

U(x,0) = 0 (4.2-c)

U(x,6) = 0 (4. 2-d)

* where U(x,y) is the unknown function to be determined. This BVP is

described by equations (4.1) and (4.2) as a rectangle with dimensions of

8 in the x-direction and 6 in the y-direction (see Figure 9).

y --- h -- "X

(0.6) U = 0

U U U h
11 12 13 Y

U =0 U21 U22 U23 U 0

U = 0 (8,0) x

• Figure 9. 2-D BVP with 6 Interior Nodes
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TABLE II

Exact Solution to 2-D Poisson's Equation

at 6 Interior Nodes

Nodal Point Exact Solution

U 11  4.18250

U 12  5.95685

N U 4.18250. U13

U2 1  4.18250

U2 2  5.95685

U23 4.18250

Analytical Solution

Equation (4.1) can be solved using variable substitution, separation

of variables, and Fourier Series techniques. The complete solution to

this BVP can be found in Appendix C. The solution to equation (4.1),

after applying the boundary conditions in equation (4.2) is

U(x,y) = (8x - x 2  - 512/7
3 )

{sinh[(2n-l)Ty/81+sinh[(2n-l)T(6-y)/8]1

k2n-1) 3sinh[3(2n-l)fr/4]

sin{(2n-l)nx/8J (4.3)

The exact solutions for U(x,y) at the 6 interior nodes shown in Figure 9

are found by solving equation (4.3) at each nodal point. A simple BASIC

program was written to solve for these nodal points. The solutions con-

verged to the fifth decimal place after only six terms were summed. A

, ...-. summary of the exact solutions are in Table II.
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Numerical Solution

The equation (4.1) can also be found using numerical approximations

as outlined in Chapter II. The mesh is superimposed over the rectangle

as shown in Figure 9. There are n equally spaced nodes in the x-direction,

with a mesh-size of h , and m equally spaced nodes in the y-direction,
x

with a mesh-size of h . The total number of interior nodes is equal to

m x n, which is equal to N. The size of h and h will dictate --he nuber
X y

of n and m points, hence, the number of simultaneous equations necessary

to be solved. The accuracy of the solution in general is dependent on

the value of n and m as in the one dimensional problem.

Finite Differance Method. By allowing h =h and representing themx y

by h, the solution with FDM, using central difference approximations, can

be simplified. Equation (4.1) can be approximated by

S- + 2 = 0 
(4.4)

h 2  h 2

x y

since h =h =h , then
xy

1/h 2
[U k-2U 3 U +U -2U +U 1+2 = 0 14.5)

which can be simplified to

I/h [j+lU k+ Uj l,k+U j l+k+ l-k-4Uj ] + 2 = 0 (4.6)

Equation (4.6) is a matrix equation which can be solved directly by the

Gauss Elimination method. Figure 10 is an example of equation (4.6)

with 6 interior nodes (3 nodes in the x-direction and 2 nodes in the

y-direction).
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-4 1 0 1 0 0 U -8

1 -4 1 0 1 0 U12  -8

."0 1 -4 0 0 1 U8
1 13 -8

- 1 0 0 -4 1 0 U2 1  -8

0 1 0 1 -4 1 U2 2  -8

0 0 1 0 1 -4 U -8
_ L23

Figure 10. 2-D Solution to Equation (4.6) with 6 Interior Nodes

Fast Fourier Transform Method

The solution to equation (4.1) using the FFT method is quite similar

to the method described in Chapter III for the one dimensional problem

except an additional dimension is added. By allowing U(xy) and

Ffx,y)=2 to be extended as odd, 2L-periodic functions in both x and y,

then equation (4.1) can be solved using numerical approximations in three

steps (16:151). The derivation of each of these steps can be found in

Appendix D. The first step is to compute the coefficients, F jk by the

use of the Fast Fourier transformation of

4(h h) M N

F j = X x y - I sin(jmAx/x ) I sin(klnAy/ymax )fj ]k xmxy Lmax mx n
max max m=l n=

(4.7)

where x is the maximum value of x in the x-direction and yma x is the!maxma

maximum value of y in the y-direction. The value, f , is defined as thew" mn

discrete value of F(x,y), where h =x /(M+1), the mesh size in thex max
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, x-direction, and hy=y /(N+l) , the mesh size in the y-direction.

Mmbh

M is defined as the number of mesh ponts in the x-direction and N is

'<< defined as the number of mesh points in the y-direction. The second step

is to compute the coefficients, C k' by applying

-F
jk jk (4.8)
jk -[(jT/x )2 + (k7/y ma )21max Ymax )

The final step is to compute the nodal values of the function U(x,y) by

applying the inverse FFT from

M-1 N-I

U(x,y) I_ Cks in(37x/x )sin(k7y/Ymax ) (4.9)
j=l k=l

Computer Analysis

The FORTRAN code for the FFT two dimensional problem is listed in

Appendix A, and uses the IMSL Routine FFTCC. The Gauss Elimination codes

were developed using the IMSL Routine LEQT1F. Because of the straight

forward nature of the LEQT1F subroutine the FORTRAN codes for the GE

method are not listed in an appendix.

FFT Algorithm. There are three important points that must be con-

sidered when applying the two dimensional FFT algorithm. The first two
a"
a"
a' points are the same as outlined in Chapter III under the FFT Algorithm

asubheading. First, the sampled interval must be extended over 2L to

account for the FFTCC subroutine that makes computations over a 2L interval.

Second, the DC component must again be removed, as in the one dimensional

problem, prior to applying step two (solving for C k coefficients). This
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is accomplished by starting to sum at j=2 and k=2 rather than j=l and

k=l Finally, care must be taken as to which FFT algorithm is imple-

mented. Ideally, an algorithm that computes sine FFTs and inverse sine

FFTs would be desired. The author used the IMSL routine FFTCC, for the

two dimensional problem, which computes the FFT of a complex array in one

dimension. This was necessary because a sine FFT that computed both the

e-N

since FFT and the in:verse sine VFT was not available. The FFTCC subroutine

uses a complex kernel, which means that both the real and the imaginary

part of the function is computed. In order to compute the two dimensional

FFT of a sine function it was necessary to write a subroutine to compute

the two dimensional FFT and eliminate the real portion of each computation.

Appendix E contains a mathematical explanation as to the reasoning behind

- this computation. With the cosine terms removed the transform becomes a

double sine series as shown by equations (4.7) and (4.8). The number of

computations required to calculate the two dimensional FFT then becomes

-'- 8NLOG N + ION (11:217).

Exact Solution. The exact solution to equation (4.1) was found at

six points as illustrated in Figure 9. The value of each nodal point is

listed in Table II. These exact solutions were then compared to the solu-

tions obtained from using the FDM (Gauss Elimination) and the FFT method.

Nodal Points. Equation (4.1) was solved numerically with three
-I

increasingly larger number of nodal points. The first mesh size included

35 interior nodes, which resulted in the h and h being equal to 1.0.x y

The next mesh size included 165 interior nodes, which resulted in the h
x

and h being equal to 0.5. The final mesh size included 713 interior nodes,
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which resulted in the h and h ybeing equal to 0.25. Appendix B contains
x y

the results of these computations.

Average Error. The accuracy of the approximations was determined

using the same average percent error equation as discussed in Chapter III.

<E Exact Solution - Numerical Solution x 100 (3.19)
Exact SolutionI

Comparison of Approximations to Exact Solutions. The plots of the

average percent error to each set of interior nodes are found in Figure 11.

As the number of interior nodes increases the accuracy of the FFT method

increases. Note, that the accuracy of the FDM decreases as the number of

nodes increases. This decrease in accuracy is due to roundoff error

(6:38). Table IX, Appendix B, contains the values of the analytical

solutions as compared to the GE and FFT methods.

Computational Time. The comparison of the computational speed between

the GE method and the FFT method can be found in Tables X and XI, Appen-

dix B. Table X contains the values of the algorithm computational time

required to compute either the GE or the FFT. Table XI contains the

values of the total computer time used to run each program. Figures 12

and 13 provide a graphic illustration of the computational times.

Figure 12 is the comparison of the algorithm computations, whereas

Figure 13 is the comparison of the total computer time. It is obvious

that the N3 operations required for GE method really become significant

when the interior nodes are increased to 165, as compared to the FFT,

4.8NLOG 2 N+ION.
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COMPUTATIONAL TIME ON

TH HARRIS 800 COMPUTER

o~r GE

10000

N FFT

., 1000

100

00
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1.0 T

0.1i 35 165 713

fINTERIOR NODES

Figure 12. Comparison of Algorithm Computational Times

for the GE and FFT Methods in the Two

Dimensional BVP
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Figure 13. Comparison of Total Computer Time for the
GE and FFT Methods in the Two Dimensional
BVP
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Not only does the computational time increase for the GE method,

but the computer storage space increases dramatically. For example, to

compute the 713 interior nodes for the GE method, it requires a matrix

713x713 plus two one dimensional matrices of 713. This equates to over

500,000 memory storage locations (10). On the other hand, to compute the

*, same 713 interior nodes using the FFT method, it requires two 75x82

matrices, one 120x160 matrix, one 160 matrix, and one complex 120x160

matrix. This equates to just over 50,000 storage locations. (The FFT

*% matrices are computing 4x713 interior nodes, because the FFT method

requires a 2L interval in both the x-direction and the y-direction.)

This large storage requirement, in addition to the computational time,

detract from the efficiency of the GE method and enhance the FFT method.

t .3
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S , V. Conclusions and Recommendations

Conclusions

The results from the one dimensional problem show that the Thomas

method (Tridiagonal Method) is the most efficient of the methods examined

because it provides the exact solution, and the computational time

requires only 8N operations (3:48). The FFT method, though faster than

the GE method as the value of N increases, cannot provide the exact solu-

tion. The GE method, as does the Thomas method, provides the exact

solution with only 4 nodal points. This means small memory storage

requirements, and small computer time usage in the one dimensional BVP.

The exact solution using the FDM is because the FDM is based on a poly-

nomial approximation, whereas the FFT is based on a trigonometric

0approximation.
The power of the FFT method is not realized until the Poisson's

equation is analyzed in two dimensions. The Thomas method cannot be

utilized in the two dimensional problem, because a tridiagonal cannot be

formed in two dimensions when the matrix is full (5:56). The Thomas

method is used in the Hockney method for two dimensions, where the two

dimensional problem is broken down into a one dimensional FFT and a one

dimensional Tridiagonal (8:95; 16:151). Additionally the Thomas method

( can be used in two dimensions if the matrix is sparsely populated (5:56).

In the case of a fully populated matrix the comparison of direct numeri-

cal methods is narrowed to only the GE method and the FFT method.

The average percent error of the FFT method in the two dimensional

BVP decreases as the number of nodal points is increased, as shown in
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Figure 11. The average percent error of the GE method increases with

increased nodal points due to roundoff error (6:38). The best percent

error with the GE method is 0.27% at 35 nodal points, whereas the best

percent error with the FFT method is 0.92% at 713 nodal points. One would

reason then that the Ge method is more efficient since it provides greater

accuracy with less nodal points. This is true, but when a larger set of

* nodal points are required, which is often the case in engineering, the

value of the GE method is greatly reduced. This is apparent when the com-

putational times and the computer storage requirements of the GE method

are compared to the FFT method (see Figures 12 and 13). The FFT method

is 3 times faster with 35 nodal points than the GE method, 55 times faster

with 165 nodal points, and 1175 times faster with 713 nodal points (see

Tables X and XI, Appendix B). Additionally, the computer storage require-

ment for the GE method is 10 times greater than the FFT method as discussed

in Chapter IV. Hence, not only is the FFT method faster than the GE

method, but it requires less computer memory. The FFT method seems to

provide the most efficient two dimensional method of solving Poisson's

equation numerically with full matrices. The ADI method is faster than

the FFT in two dimensions, but is only good for sparse matrices (5:56).

If the two dimensional BVP is expanded to three dimensions, then the

efficiency of the FFT method could prove to be even greater.

In the one dimensional problem four cases were considered that varied

both the value of F(x) and the boundary conditions. One question of great

concern is whether or not the FF' method can accept boundary conditions

K other than zero (13:697; 16:89). This study found that the FF' method can

be used with other than zero boundary conditions in the BVP. This procedure
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was discussed in Chapter III under the Fast Fourier Transform Method.

The two dimensional Poisson equation was only studied with boundary con-

ditions equal to zero. It is logical to assume that non-zero boundary

conditions can be applied to the two dimensional BVP and solved using the

same methods employed in the zero boundary condition problem. The diffi-

culty associated with this would be to describe the input function as

was discussed in Chapter III. The same procedure would be used as was

done in the one dimensional problem, except the function would be expanded

to two dimensions.

Recommendations

This study has only touched the surface on how the FFT method can be

used to solve BVPs. Only boundary conditions of zero and constants were

used in this study to establish a basis for the validity of this method.

The FFT method needs to be expanded to non-zero boundary conditions in

two dimensions. (J. Rosser, from the University of Wisconsin, has done

some work in the area (12:38).) And, then expanded to three dimensions

as mentioned by Fox and Otto (5:56). Additionally, there has been limited

work in the use of Neumann boundary conditions (12:41; 13:707). Additional

research needs to be done on how extensive FFTs can be used in conjunction

with Neumann conditions. In this study and in all the references found on

the FFT method, the only equation studied was the Poisson equation. Hence,

there is a question as to the ability of this FFT method to provide numer-

ical solutions for equations other than elliptic equations. Research

needs to be done to determine the limitations of FFTs on solving BVP
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with parabolic and hyperbolic equations. Another recommendation is to

develop a FORTRAN code that will compute the sine FFT and the inverse sine

FFT, thus increasing the efficiency of the FFT algorithm. The power of

the FFT is extraordinary and needs to be examined extensively beyond the

scope of this study.
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Appendix A: Computer Codes

This Appendix contains the listing of the FORTRAN

programs used in the one and two dimensional cases for

computing the FFT. All FFT FORTRAN programs were run on

the Harris 800 computer, using the IMSL routine FFTCC.

The following are the titles of the programs in

Appendix A and their function.

TITLE FUNCTION

FFT Compute one dimensional Poisson

equation with F(x)=40 and Boundary
Conditions equal to zero using the FFT
algorithm.

NFFT Compute one dimensional Poisson
equation with F(x)=40 and Boundary
Conditions U(O)=2 and U(1O)=8 using the
FFT algorithm.

FFT2 Compute one dimensional Poisson
equation with F(x)=40 and Boundary
Conditions equal to zero using the FFT
algorithm.

NFFT2 Compute one dimensional Poisson
equation with F(x)=40 and Boundary
Conditions U(O)=2 and U(1O)=8 using the
FFT algorithm.

FFT2Dl Compute the two dimensional Poisson
equation with F(x,y)-2 and Boundary
Conditions equal to zero using the FFT
algorithm.
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' *PROGRAM NAME FFT F(X) = 40 (REC FUNCTION)
d "*AUTHOR TODD R JONES

*DATE 14 OCT 1985

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*ZERO AT BOTH ENDS. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*OF N. *

* DECLARATION OF VARIABLES

INTEGER N,IWK(1050)
REAL WK(1050),L(300)
COMPLEX A(300)
PI = 4.*ATAN(I.)

* INPUT NUMBER OF POINTS TO BE TRANSFORMED
~*

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*,N

* INPUT FUNTION DESCRIPTION F(X)
* A(1) = (0,0)

A(N/2) = (0,0)
A(N) = (0,0)
A(2) - (40,0)
A(N/2+1) = (-40,0)
DO 10 I = 3,N/2-1

A(I) = A(2)
10 CONTINUE

DO 20 I = N/2+1,N-1
A(I) = A(N/2+l)

20 CONTINUEA'' *

* START TIMER

CALL BTIME
DO 30 1 = 1,N

A(I) = CONJG(A(I))
30 CONTINUE

* USE FFT SUBROUTINE FFTCC

CALL FFTCC(A,N,IWK,WK)
DO 40 1 - I,N

A(I) - CONJG(A(I))*2/N
40 CONTINUE

DO 50 1 - 2,N
A(I) - ((10/((I-1)*PI))**2)*A(I)

50 CONTINUE
43



CALL FFTCC(A,N,IWK,WK)
,- CALL ETIME

******** STOP TIMER *******

PRINT VALUES OF U(N)

OPEN( 1 ,FILE='DAT1FT1')
DO 60 I = 1,N

L(I) - REAL(A(I))
60 CONTINUE

DO 70 I - 1,N/2
'. WRITE (1,100) L(I)

100 FORMAT(' ',F8.3)
70 CONTINUE

CLOSE (1)
END
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*PROGRAM NAME NFFT F(X) - 40 (REC FUNCTION)
-. *AUTHOR TODD JONES

*DATE 1 NOV 1985

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*U(O)=2, AND U(10)=8. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*OF N. *

* DECLARATION OF VARIABLES

INTEGER N,IWK(1050)
REAL WK(1050),L(300)
COMPLEX A(300)
PI = 4.*ATAN(1.)

* INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*,N

* INPUT FUNCTION DESCRIPTION F(X)
. *

A(1) = (2.0,0)
A(2) = (40.0,0)
A(N/2) = (8.0,0)
A(N/2+1) = (-2.0,0)

A(N/2+2) - (-40.0,0)
A(N) = (-8.0,0)
DO 10 1 = 3,N/2-1

A(I) = A(2)
10 CONTINUE

DO 20 1 = N/2+2,N-1
A(M) = A(N/2+2)

20 CONTINUE

* START TIMER

CALL BTIME
DO 30 I - I1N

A(I) - CONJG(A(I))
30 CONTINUE~*
* USE FFT SUBROUTINE FFTCC

CALL FFTCC(A,N,IWKWK)
DO 40 1 = 1,N

A(I) = CONJG(A(I))*2/N
- 40 CONTINUE

DO 50 I 2,N
A(I) - ((1O/((I-1)*PI))**2)*A(I)
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50 CONTINUE
CALL FFTCC(A,N,IWK,WK)
CALL ETIME

*******STOP TIMER ****

*PRINT VALUES OF U(N)

OPEN( 1, FILE='DAT1NFT1')
DO 60 I1 1,N

L(I) =REAL(A(I))

PRINT*,I,' ',L(I)
60 CONTINUE

DO 70 1 = 1,.N/2
WRITE(1,100) L(I)

100 FORMAT(' ',F8.3)
70 CONTINUE

CLOSE (1)
END
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4, .. *PROGRAM NAME FFT2 F(X) = X (RAMP FUNCTION)
S*AUTHOR TODD R JONES

*DATE 14 OCT 1985

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*ZERO AT BOTH ENDS. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*OF N. *

.,- DECLARATION OF VARIABLES

INTEGER N,IWK(1050)
REAL WK(1050),L(300)
COMPLEX A(300)
PI = 4,*ATAN(1.)

* INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
* READ*,N

INPUT FUNTION DESCRIPTION F(X)

A(O) = (0,0)
:- -3A(l) = -10

A(N/2) = (0,0)
A(N) = (0,0)
DO 10 I = 2,N/2-1

A(I) = A(I-1) + 20./N
10 CONTINUE

DO 20 1 = N/2+lN-I
A(M) = A(I-1) + 20./N

20 CONTINUE

* START TIMER

CALL BTIME
DO 30 I = 1,N

A(I) = CONJG(A(I))
30 CONTINUE

SZi *
* USE FFT SUBROUTINE FFTCC

* CALL FFTCC(A,N,IWKWK)

DO 40 I = 1,N
A(I) - CONJG(A(I))*2/N

40 CONTINUE
DO 50 1 - 2,N

A(I) - ((1O/((I-I)*PI))**2)*A(I)
50 CONTINUE

CALL FFTCC(A,NIWKWK)
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CALL ETIME
******** STOP TIMER *********

* PRINT VALUES OF U(N)

DO 100 I - I,N
L(I) = REAL(A(I))
PRINT*,L(I)

100 CONTINUE
END
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I'q . *PROGRAM NAME NFFT2 F(X) = X (RAMP FUNCTION)

*AUTHOR TODD JONES
*DATE 6 NOV 1985

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*U(O)=2, AND U(1O)=8. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*OF N. *

SDECLARATION OF VARIABLES

INTEGER N,IWK(1050)
REAL WK(1O50),L(300)
COMPLEX A(300)

- PI = 4.*ATAN(1.)
*INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'

.6' READ*,N
PRINT*,'ENTER VALUE FOR STEP INCREMENT "Z"'
READ*,Z
PRINT*,'ENTER VALUE FOR A(N/2+1)'

* READ*,A(N/2+2)

• INPUT FUNTION DESCRIPTION F(X)

A(1) = (2.0,0)
A(N/2) = (8.0,0)
A(N) = (-2.0,0)
A(N/2+1) = (-8.0,0)
DO 10 I = 2,N/2-1

-~ A(I) = A(I-1) + Z
10 CONTINUE

DO 20 I = N/2+2,N-1
A(I) = A(I-1) + Z

20 CONTINUE

• START TIMER

CALL BTIME
DO 30 I = 1,N

A(I) = CONJG(A(I))
30 CONTINUE

* USE FFT SUBROUTINE FFTCC

CALL FFTCC(A,N,IWK,WK)
DO 40 I - 1,N

A(I) - CONJG(A(I))*2/N
40 CONTINUE
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DO 50 I = 2,N
A(I) = ((1O/((I-1)*PI))**2)*A(I)

50 CONTINUE
CALL FFTCC(A,N,IWK,WK)
CALL ETIME

******** STOP TIMER *********

* PRINT VALUES OF U(N)

DO 100 1 = I,N
L(I) - REAL(A(I))
PRINT*,I,' ',L(I)

100 CONTINUE
OPEN (1,FILE='DAT1NF2')
DO 60 I - 1,N/2

WRITE(1,200) L(I)
200 FORMAT(' ',F8.4)
60 CONTINUE

CLOSE (1)
END

0
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*PROGRAM NAME FFT2DL F(X,Y)= 2 (REC FUNCTION)
*AUTHOR TODD JONES
*DATE 23 OCT 85

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A TWO (2)
*DIMENSIONAL BVP (POISSON EQUATION) USING FFTs. THE
*BOUNDARIES MUST BE ZERO ON ALL SIDES. THE FFT
*SUBROUTINE IS AN IMSL SUBROUTINE CALLED FFTCC.

* DECLARATION OF VARIABLES
Y. , *

INTEGER IWK(75,82),N,IA,IJOB
REAL RWK(75,82),L(120,160)
COMPLEX A(120,160), CWK(160)
COMMON IWK,RWK,CWK,L,A

.3 PI = 4.0 * ATAN(I.)

* INPUT NUMBER OF POINTS TO BE TRANSFORMED
~*

PRINT*,'ENTER NO. OF POINTS TO BE TRANSFORMED-X DIR'
READ*,NI
PRINT*,'ENTER NO. OF POINTS TO BE TRANSFORMED-Y DIR'
READ*,N2
IAI = N1
IA2 = N2

" ENTER COMPLEX ARRAY F(X)

***** QUADRANT I *****
DO 10 I = 2,NI/2
DO 10 J = 2,N2/2

A(I,J) = (2.0,0.0)
10 CONTINUE

"A ***** QUADRANT II *****
DO 15 I = Nl/2+1,NI-1
DO 15 J - 2,N2/2

A(I,J) - (-2.0,0.0)
15 CONTINUE
***** QUADRANT III *****

DO 20 1 = 2,NI/2
'V' DO 20 J = N2/2+1,N2-1

A(I,J) = (-2.0,0.0)
20 CONTINUE
***** QUADRANT IV *****

C' DO 25 1 - Nl/2+1,N1-l
DO 25 J - N2/2+1,N2-1

,"' A(I,J) - (2.0,0.0)
25 CONTINUE

* START TIMER

CALL BTIME
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* SET IJOB

IJOB = -1

USE IMSL ROUTINE FFT3D

CALL TWODIM(A,IAIIA2,NI,N2,IJOB,IWK,RWK,CWK)
DO 30 1 = 2,Nl
DO 30 J - 2,N2

A(I,J) - (4*A(I,J))/((PI*(J-I)/X)**2+(PI*(I-I)/Y)**2)
30 CONTINUE

IJOB = +1
CALL TWODIM(A,IAI,IA2,NI,N2,IJOB,IWK,RWK,CWK)
CALL ETIME

******** STOP TIMER ********
DO 35 I = 1,N1
DO 35 J = 1,N2

L(I,J) = REAL(A(I,J))
35 CONTINUE

• PRINT VALUES OF NODAL POINTS TO A FILE

OPEN(1,FILE='DFT2DI')
DO 40 I = 1,NI/2
DO 40 J = 1,N2/2
WRITE(1,100) I,J,L(I,J)

100 FORMAT(' ',14,14,F8.3)
40 CONTINUE

CLOSE (1)

PRINT ARRAYS TO SCREEN

DO 45 I = 1,NI/2
DO 45 J = 1,N2/2

PRINT 200,I,J,L(I,J)
200 FORMAT(' ',14,14,F8.3)
45 CONTINUE

END
* *** ** *** ****** **** *** ************** **** **************** **

•****************** SUBROUTINE TWODIM *

SUBROUTINE TWODIM(A,IA1,IA2,N1,N2,IJOB,IWK,RWK,CWK)
INTEGER IA1,IA2,N1,N2,IJOBIWK(1)

'a. REAL RWK(1)
'a COMPLEX A(IA1,IA2),CWK(1)

INTEGER I,J,K,L,M,N
* REAL R12

COMPLEX C12

* DETERMINE TRANSFORM OR INVERSE TRANSFORM

IF(IJOB.GT.O) GO TO 10
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* INVERSE TRANSFORM

DO 15 I - I,Ni
DO 15 J - 1,N2

A(I,J) - CONJG(A(I,J))
15 CONTINUE

TRANSFORM SECOND SUBSCRIPT

10 DO 20 L - 1,N1
DO 25 M = 1,N2

CWK(M) = A(L,M)
25 CONTINUE

CALL FFTCC(CWK,N2,IWK,RWK)
DO 30 J = 1,N2

A(L,J) - AIMAG(CWK(J))
30 CONTINUE
20 CONTINUE

* TRANSFORM FIRST SUBSCRIPT

DO 35 J - 1,N2/2
DO 40 K - 1,N1

CWK(K) = A(K,J)
40 CONTINUE

CALL FFTCC(CWK,N1,IWK,RWK)
DO 45 L = 1,Nl

A(L,J) = AIMAG(CWK(L))
45 CONTINUE
35 CONTINUE

* INVERSE TRANSFORM

IF (IJOB.GT.O) GO TO 55
R12 - N1*N2
C12 - CMPLX(R12,0.O)
DO 50 I - I,Ni
DO 50 J - 1,N2

A(I,J) - CONJG(A(I,J))/CI2
50 CONTINUE
55 RETURN

END
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V, 1 Appendix B: Tables of Data

This Appendix contains the tables of data collected

from the one dimensional and the two dimesional Poisson's

equation to include Average Errors and Computational Times.

Table III

Average Error for the One Dimensional Poisson Equation
with F(x)=40 and U(O)=U(1O)=O

_ _ _4-Interior Nodes
Analytical FDM FFT Average Error (Z)

X U(x) U(x) (x) FDM FFT
2 320 320 371.97 0 16.24
4 480 480 468.98 0 2.30
6 480 480 445.84 0 7.12
8 320 360 302.58 0 5.44

Total Average Error 0 7.77

_ _ _9-Interior Nodes
Analytical FDM FFT Average Error (%)

X U(x . U(x) U(x) FDM FFT
2 320 320 360.71 0 12.72
4 480 480 483.90 0 0.81
6 480 480 468.87 0 2.32

___8 320 320 315.64 0 1.36
Total Average Error 0 4.30

___49-Interior Nodes
Analytical FDM FFT Average Error

I XL ULx. U(x) Ux) FDM FFT
2 320 320 331.32 0 3.54
4 480 480 482.85 0 0.59

6 480 480 479.08 0 0.19
8 320 320 320.02 0 0.006

Total Average Error 0 1.08

_ _99-Interior Nodes
Analytical FDM FFT Average Error

X U(x) U(x) U(x) FDM FFT
2 320 320 316.35 0 1.14
4 480 480 479.19 0 0.17
6 480 480 481.23 0 0.25
8 320 320 322.47 0 0.77

Total Average Error 0 0.58

5.
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Table IV

Average Error for One Dimensional Poisson's Equation
with F(x)=x and U(O)=U(10)=O

_ _ _ _ 4-Interior Nodes
Analytical FDM FFT Average Error

X U(x) U(x) U(x) FDM FFT
2 32 32 37.78 0 18.06
4 56 56 64.54 0 15.25

6 64 64 72.12 0 12.68
8 48 48 52.58 0 9.54

Total Average Error 0 13.S8

9-Interior Nodes
Analytical FDM FFT Average Error

X U(x) U(x) U(x) FDM FFT
2 32 32 34.97 0 9.28
4 56 56 60.66 0 8.32
6 64 64 68.55 0 7.11
8 48 48 50.65 0 5.52

ITotal Average Error 0 7.56

"__49-Interior Nodes
Analytical FDM FFT Average Error

x U(X) U(X) U(X) FDM FFT

2 32 32 32.60 0 1.87
4 56 56 56.98 0 1.75
6 64 64 64.98 0 1.53
8 48 48 48.58 0 1.21

Total Average Error 0 1.59

_________ 99-Interior Nodes ______ _____

Analytical FDM FFT Average Error
x U(X) U(x) U(x) FDM FFT
2 2 32 32.3 0 0.94

4 S6 56 56.49 0 0.87
6 64 64 64.49 0 0.76
8 48 48 48.29 0 0.60ITotal Average Error 0 0.78

MI
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Table V

Average Error for One Dimensional Poisson's Equation
with F(x)=40 and U(O)=2 and U(10)=8

______ 4-Interior Nodes
Analytical FDM FFT Average Error (%)

1 U(x) U(x) U(x) FDM FFT
2 323.2 323.2 349.56 0 0.40
4 484.8 484.8 441.31 0 9.01
6 485.6 485.6 373.51 0 7.44
8 326.8 326.8 152.10 0 53.45

Total Average Error 0 17.57

_9-Interior Nodes
Analytical FDM FFT Average Error (

X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 352.78 0 9.15
4 484.8 484.8 478.75 0 1.25
6 485.6 485.6 444.76 0 8.41
8 326.8 326.8 250.86 0 23.23

-Total Average Error 0 10.51

___"__49-Interior Nodes
Analytical FDM FFT Average Error (%)

X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 305.35 0 5.52
4 484.8 484.8 474.55 0 2.11
6 485.6 485.6 483.75 0 0.38
8 326.8 326.8 332.95 0 1.88

Total Average Error 0 2.47

____99-Interior Nodes
Analytical FDM FFT Average Error (

X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 312.89 0 3.19
4 484.8 484.8 477.49 0 1.50
6 485.6 485.6 482.09 0 0.72
8 326.8 326.8 326.69 0 0.03

STotal Average Error 0 1.36
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A: Table VI

Average Error for One Dimensional Poisson's Equation
with F(x)=x and U(O)-2 and U(10)=8

_ _ _ _ 4-Interior Nodes
Analytical FDM FFT Average Error (Z)

X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 42.46 0 20.62
4 60.4 60.4 62.98 0 4.27
6 69.6 69.6 70.56 0 1.38
5 54.8 54.8 59.64 0 8.83

Total Average Error 0 8.77

_ _ _ _ 9-Interior Nodes
Analytical FDM FFT Average Error (

X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 34.56 0 1.81
4 60.4 60.4 63.78 0 5.59
6 69.6 69.6 66.07 0 5.07
8 54.8 54.8 A 57.52 0 4.46

Total Average Error 0 4.23

_____49-Interior Nodes

Analytical FDM FFT Average Error (%)
X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 35.63 0 1.22
4 60.4 60.4 59.92 0 0.79
6 69.6 69.6 68.05 0 2.22
8 54.8 54.8 54.53 0 0.49

Total Average Error 0 1.18

_99-Interior Nodes

Analytical FDM FFT Average Error (%)
X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 35.08 0 0.34
4 60.4 60.4 60.39 0 0.01
6 69.6 69.6 68.10 0 2.15
8 54.8 54.8 54.03 0 1 1.40

]Total Average Error 0 0.97
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Table VII

lo Computing Time in Seconds for th
One Dimensional Poisson Equation

Number of Computational Time (Seconds)
Nodes Thomas GE FFT

4 0.001 0.002 0.005
9 0.001 0.007 0.010
49 0.004 0.153 0.056
99 0.008 0.639 0.114

Table VIII

Total Computer Time used in Computin§
the One Dimensional Poisson Equation

Number of Computational Time (Seconds)
Nodes Thomas GE FFT

4 0.031 0.032 0.036
9 0.038 0.043 0.046

49 0.087 0.246 0.140
99 0.164 0.814 0.266

1The computing time is only the time used by the
computer to compute the particular algorithm.

2The total computer time includes the time used by the
computec to run the entire computer program.
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Table IX

Average Error for the Two Dimensional Poisson Equation
with F(x)=2 and all Boundary Conditions equal to Zero

____-_35-INTERIOR NODES
i. Nodal Analytical FDM FFT Ave Error (%)

Points U yx.y) U(xY) U(x.y) FDM FFT
Ull 4.8125 4.794 4.742 0.38 1.46
U12 4.8125 4.794 4.756 0.38 1.17
U21 5.9568 5.960 6.111 0.05 2.58
U22 5.9568 5.960 6.126 0.05 2.84
U31 4.8125 4.794 4.625 0.38 3.89
U32 4.8125 4.794 4.972 0.38 3.31

'Total Average Error 0.27 2.54

___,,'._165-INTERIOR NODES
Nodal Analytical FDM FFT Ave Error ( )
Points U(xy) U(xy) U(x~y) FDM FFT
Ull 4.8125 4.856 4.705 0.90 9.19
U12 4.8125 4.856 4.808 0.90 0.09
U21 5.9568 6.026 5.999 1.16 0.71
U22 5.9568 6.026 6.136 1.16 3.00
U31 4.8125 4.856 4.731 0.90 1.69
U32 4.8125 4.856 4.836 0.90 0.48

Total Average Error 0.98 2.36

713-INTERIOR NODES
Nodal Analytical FDM FFT Ave Error (%)
Points U(x2y) U(x.y) U(x.y) FDM FFT
Ull 4.8125 4.872 4.771 1.23 0.86
U12 4.8125 4.872 4.801 1.23 0.23
U21 5.9568 6.043 6.036 1.44 1.32
U22 5.9568 6.043 6.074 1.44 1.96
U31 4.8125 4.872 4.770 1.23 0.88
U32 4.8125 4.872 4.799 1.23 0.28

Total Average Error 1.30 0.92

4~5
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. * .--" Table X

Computing Times in Seconds for thf
Two Dimensional Poisson Equation

-"Number Computational Time (Sec)
I of Nodes GE FFT

35 0.302 0.116
165 26.801 0.490

J 713 35min 4.393sec 1.790

Table XI

Total Computer Time in Seconds for 4
the Two Dimensional Poisson Equation

Number Computational Time (Sec)
of Nodes GE FFT

35 0.381 0.234
165 27.134 0.876
713 35min 15.25sec 3.310

3 The computing time represents only the time used by
the computer to compute the particular algorithm.

4The total computer time includes the time used by the
computer to run the entire computer program.

-'-I'
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0 Appendix C: Analytical Solution to the 2-D BVP

The solution to the BVP described by equation (4.1) and (4.2) is

solved by using a variable substitution and the Fourier Series method (4).

By making a variable substitution

U(x,y) = V(x,y) -X
2 + 8x (C.1-a)

tr'en

.2U - 2 
(C. 1-b)

32 U _ 
2 V

y2  y (C. 1-c)

,% therefore

2U = V2V - 2 (C.2)

J. so that

V2V V 0 (C.3)

By making the variable substitution in the boundary conditions

U(0,y) = V(0,y) = 0 (C.4-a)

U(8,y) = V(8,y) - 64 + 64 = 0 (C.4-b)

U(x,0) = V(x,O) - x2 + 8x = 0 (C.4-c)

U(x,6) = V(x,6) - x2  + 8x = 0 (C.4-d)

therefore

4'
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V(Oy) = 0 (C.5-a)

V(8,y) = 0 (C.5-b)

V(XO) = x 2 - 8x (C.5-c)

V(x,6) = X
2 - 8x (C.5-d)

By using separation of variables, equation (C.3) leads to a Sturm-Liouville

' problem that can be solved using the Fourier series. The solution takes

the form

A sinh(ngyy/8)+B sinh[(n7T/8)(6-y)l
V(xY)= n n sin(nnx/8)

n=l sinh(3n /4) J
(C.6)

* . This can be verified by referring to Churchill and Brown, page 136 (2:136).

* 4. The coefficients A and B can be solved by applying boundary conditions

e from equation (C.5).

% V(x,y) = B sin(nx/8) = x2 + 8x (C.7-a)

n=l

V(x,y) = A sin(nwyx/8) = X 2 + 8x (C.7-b)
n=l

Thus, A =B and can be solved as follows.
n n

8

A = 2/8 (X2-8x)sinlnnx/8ldx (C.8-a)

0

I8 8A n 1/4 4fX2sin(n~x/8)dx 2 fJxs in nTrx/8)dx (C.8-b)

~ ~0 0
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A = 1/4 -(8X 2 /nfr)cos(nfrx/8)+128x/(n 2rr2 )sjn(n~x/8)

+ 1024/(n 3 n 3 )cos(nux/8) -2 (x/nncos(nrx/8)

+64/(n2Tr2)sin(n7rx/8) 10 (C.8-C)

A = 1/4[1-512(_1)n /(nrr)+1024(-l) n/(n3ur3 ) - 1024/(n 37r3 )I
n

- 2[-(64/nifl (_1)n, (C.8-d)

n
An = Bn = 256/(n3 lT3 )[(-1) _-11 (C.8-e)

By substituting A nand B ninto equation (C.6) the following is obtained.

nCIn

_______256[ __ (sinh(nlTy/8)+sinhf(nTI8) (6-y)}j

nr 3TF1 sinh(3nT/4)

sin(nIry/8) (C.9)

Equation (4.1) is solved by making the variable substitution from equation

(C.9) into equation (C.1-a).

U(x, y) = 8x x2 -
5 12 /Tr 3)

n=l (2n-1 )3sinh[ 3( 2n-1 )rr/4 I

sin[(2n-1)lnx/81 (C.10)
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Equation (C.10) was solved by programing the equation into BASIC and

running the program on a Z150 PC. It was found that the solution at

specific nodal points converged after six iterations to the fifth decimal

place. The specific nodal point solutions can be found in Table II.

-6
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Appendix D: Solution to the 2-D FFT BVP

The solution to equation (4.1) using the FFT method is simply an

extension of the one dimensional problem descr-bed in Chapter III. By

allowing U(xy) and F(x,y) to be extended as odd, 2-periodic functions in

both x and y, the general form of equation (4.1) is

' 7 2 U(xy) F f, " (D. 1)

and can be represented by the Fourier series

M-1 N-1
F(x,y) I I F in( )sin(kiTy/ym) (D.2)

j=: k= i max max

%.- and

M-1 N-1
U(x,y) = I Cksin(jx/x )sin(klTy/Ymax) (D.3)jk J~ ~ maxma

where C is defined as the coefficient of the Fourier series and the~jk

mesh size h =x /(M+I) and h =y m (N+l) (17:149). The boundaryx max hy=Ymax/

conditions in equation (D.1) are zero on all boundaries, as are the

boundary conditions of equation (4.1). Now, by taking the second deriva-

tives of U(xy) with respect to x and then y the following is obtained.

3 2U(xy) -1 N1 C jTr/x )2 sin(jix/x ) sin(kny/y

ax 
2  1 1l jk max max max

j=1 k=l

(D.4)

a2U(,_y) M-1 N-1

a" 32U(xy) = - M N Ck(klT/y max)2 sin(jlx/Xmax ) sin(kny/ymax

ayz j=1 k=1 k mx a a

(D.5)
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By substituting equations (D.4) and (D.5) into equation (D.i) the following

is obtained

M-i N-i

I I [(jlT x )- + (krr/y mx)21 C js in(jlnx/x mx) sin(kiry/y ma
j~i k=i1a a j a a

=-F(x,y) (D.6)

Solvi~ng for C j

= - jk (D.7)
jk -[Ujr/x mx)2 + (kff/y mx)21

The F jkis computed using the Fourier orthogonality relationship, equation

(2.10), and since

M-i N-i

C j=i k=l

* ~,and since, h= ax /(M+l) and h =y mx/(N+1) *then

4(h h M -i N-i
F jk= -(- x--- F(x,y)sin(mjlnx/x mx)sin(nkiTy/yma

max maN n=i

(D.8)

* By using equations (D.8), (D.7), and (D.3) the nodal points at any value

of UJ(x,y) can be found and are the three step method discussed in

Chapter IV.
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Appendix E: Mathematical Explanation

of the 2-D Complex FFT

To show that only the imaginary portion of the FFT array must be

used for the FFTCC IMSL routine, the following mathematical computation

is presented. The FFTCC routine computes the FFT using the form

~~N-I 12(nN

Amk = N Amne 2 (kn/N) (E.1)
n=O

To compute the two dimensional FFT it is necessary to develop two trans-

forms similar to equation (E.1) using different notation to distinguish

between the FFT in the x-direction and the FFT in the y-direction. These

- (1) (2)
two equations are A and A and defined as follows.

() N2-1

A = N 2 ei 2 (kn/N 2 ),A A (I )  A mne (E.2)

n=O

and

(2) N- i2(m/Nl)
A = A e (E.3)

m= o

where N2 is defined as the number of transformed points in the x-direction

and Ni is defined as the number of transforms in the y-direction. A(1)

is defined as the Fourier Transform of A and A( 2 ) is defined as the
mn jk

Fourier Transform of A (1 ) and the double Fourier Transform of A . To
mk mn

sole fr A(2)solve for A 2jk one can substitute equation (E.2) into equation (E.3) and

obtain
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(2) NI-i N2-1 i2n(kn/N2)\ i2T(jm/Nl)A ( 2 j I I A mne e (E.4)
SAk =m=0 n=0 A4

"'Using Euler's identity

S(2) Nl- N2-1

A ( I A [cos(2kn/N2) + isin(2lTkn/N2)], ,jk m=0 n=0 m

[cos(27rjm/Nl) + isin(2njm/Nl)] (E.5)

By multiplying out equation (E.5), the following is obtained.

(2) NI-1 N2-1
Ajk I A [cos(22kn/N2)cos(2rjm/Nl)
j m=0 n=O

+ isin(2lTkn/N2)cos(27jm/Nl) + isin(211jm/Nl)cos(2ffkn/N2)

- sin(27kn/N2)sin(27rjm/Nl)] (E.6)

Note that the only term required to compute the double Fourier sine

transform is the last line of equation (E.6), -sin(2nkn/N2)sin(2ffjm/Nl).

It is obvious that the first three cosine and sine terms of equation

(E.6) can be eliminated by deleting the real portion of the FFT each

time it is computed in the FORTRAN program FFT2D1 (See Appendix B).

68

0-'XAK A.! %1



Bibliography

1. Brigham, E. Oran. The Fast Fourier Transform. Englewood Cliffs NJ:
Prentice-Hall, Inc., 1974.

2. Churchill, Ruel V. and James Ward Brown. Fourier Series and Boundary
Value Problems (Third Edition). New York: McGraw-Hill Book Company,
1978.

3. Clark, Melville, Jr. and Kent F. Hansen. Numerical Methods of
Reactor Analysis. New York: Academic Press, 1964.

4. Edstrom, Clarence R., Associate Professor. Personal interviews. Air
Force Institute of Technology, Wright-Patterson AFB OH, 20 November

through 27 November 1985.

5. Fox, Geoffrey C. and Steve W. Otto. "Algorithms for Concurrent
Processor," Physics Today, 37 (5): 50-59 (May 1984).

6. Gerald, Curtis F. and Patrick 0. Wheatley. Applied Numerical
Analysis (Third Edition). Menlo Park CA: Addison-Wesley Publishing
Company, 1984.

7. Hamming, Richard W. Introduction to Applied Numerical Analysis.
New York: McGraw-Hill Book Company, 1971.

8. Hockney, R.W. "A Fast Direct Solution of Poisson's Equation Using
Fourier Analysis," Journal of the Association for Computing
Machinery, 12 (1): 95-113 (January 1965).

9. IMSL, Inc. IMSL Library User's Manual (Edition 9.2), Houston TX,
November 1984.

10. Rice, Joel. Contractor, Systems and Applied Sciences Corporation.
Personal interviews. Air Force Institute of Technology, Wright-

Patterson AFB OH, 2 September through 10 December 1985.

11. Roache, Patrick J. "A Pseudo-Spectral FFT Technique for Non-Periodic
Problems," Journal of Computational Physics, 27 (2): 204-220

(May 1978).

12. Rosser, Barkley J. Fourier Series in the Computer Age, Contract
DA-31-124-ARO(D)-462. Wisconsin University Madison Mathematics
Research Center, Madison, Wisconsin, February 1974 (AD-775 585/3).

13. Skollermo, Gunilla. "A Fourier Method for the Numerical Solution of
-1 Poisson's Equation," Mathematics of Computation, 29 (131): 697-711

(July 1975).

'S.'

69

-IL



14. Smith, Gordon D. Numerical Solution of Partial Differential
* .'\ Equations. London: Oxford University Press, 1965.

15. Titchmarch, Edward Charles. Introduction to the Theory of Fourier

Integrals. Oxford: The Clarendon Press, 1948.

16. Vichnevetsky, Robert. Computer Methods for Partial Differential
Equations, Volume 1. Englewood Cliffs NJ: Prentice-Hall, Inc., 1981.

17. Weinberger, Hans F. A First Course in Partial Differential Equations
with Complex Variables and Transform Methods. New York: Blaisdell

Publishing Company, 1965.

..-.

70



Vita

Major Todd R. Jones was born on 14 September 1951 in Malad, Idaho.

He attended the United States Military Academy, West Point. New York from

which he received the degree of Bachelor of Science and was commissioned

a Second Lieutenant in the U.S. Army in 1973. Upon graduation, he served

in the Field Artillery until being accepted for the Army's Flight Training

Program in 1975. Since graduation from Flight School, Major Jones has

served in several leadership positions, both in Aviation and in Field

Artillery. He served as the S-3 of the 8th Combat Aviation Battalion,

Mainz, West Germany, prior to entering the School of Engineering, Air

Force Institute of Technology, in August 1984.

Permanent address: 2629 Meadow Avenue

Caldwell, Idaho 83605

71



: " UNC LASS IFIED ,
uaCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
" REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2 s2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

.__,._._Approved for public release

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GNE/ENP/86M-8

6a, NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
if appicab) e

School of Engineering AFIT/ENP

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code).

Air Force Institute of Technology
Wright Patterson AFB, Ohio 45433

a B. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable).

Sc ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNII
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)
See Box 19

- 12. PERSONAL AUTHOR(S)
Todd R. Jones, B.S., MAJ, US ARMY

13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT
MS Thesis FROM TO 1986 March 79

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIE LD GROUP SUB. GR Fast Fourier Transforms, Boundary Value Problems
Poisson's Equation, Finite Difference Method

19. ABSTRACT (Continue on rverse if necessary and identify by block number)

Title : FEASIBILITY AND COMPARISON INVESTIGATION OF THE USE OF THE
FAST FOURIER TRANSFORM AND FINITE DIFFERENCE METHOD FOR
NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS

Thesis Chairman: Dr. Bernard Kaplan A use: IAW AFt I90/
Professor of Physics cmLI'. E r ,1n0 I

Decrv(or R "O~chcmd rolossl .onalI Da ,0aI WAr Force Instiute 01 Techoogy (&9,r

,, DISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO (R SAME AS RPT. C OTIC USERS C0F I.DI22&. NAME OP RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 2c. OFFICE SYMBOL

Dr Bernard Kaplan 513-255-4498 AFIT/ENPI; sm I Io
DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAI

J.~ f** ~ *.= V~



! I UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

-,,..°

The purpose of this study waa-4_ determineythe feasibility
of using Fast Fourier Transfoims (FFI) to solve Boundary Value
Problems (BVP) and then compare the results to those of the Finite
Difference Method (FDM). Variations of Poisson's one and two

dimensional equations were used as a vehicle to develop the FFT

method. For the one dimensional BVP, both homogeneous and non-
homogeneous Dirichlet boundary conditions were considered. In
the one dimensional BVP the inhomogeneous function, F(x), was
also varied. The two dimensional BVP, only one inhomogeneous

~ function, F(x,y), and homogeneous boundary conditions were used.
The one dimensional model was used as a basis for developing the
two dimensional model.

The analytical solution of each problem was compared to the
numerical solution of the FDM and the FFTI method at varying
mesh sizes. The computational time of the FDM and the FFT method
were also compared.

The results indicate that the FFT is extremely efficient in
the two dimensional BVP because of the computer storage space
required and the computational time needed to solve the FFTs.
The accuracy of the FFT compares favorably to the FDM and,
as the mesh size decreases, becomes more accurate than the FDM.

~UNCLA SS IFIED

_ , , SECURITY CLA.,IPIICATION OF T"! P



-- I

rlU


